Synthesisof Some Fused Heterocyclic Compounds Based on 1-(1-Benzofuran-2-yl)-3-(furan-2-yl)prop-2-en-1-one

${ }^{(a)}$ Azza M. Abdel-Fattah, ${ }^{(b)}$ Fawzy A. Attaby and ${ }^{(c)}$ Labeeb M. Shaif

Abstract

Benzofuran-2-yl)-3-(furan-2-yl)prop-2-en-1-one(3)reacted with 2-cyanoethanethioamide (4)to afford the corresponding 6-(1-benzofuran-2-yl)-4-(furan-2-yl)-2-thioxo-1,2-dihydropyridine-3-carbonitrile(5). The synthetic potentiality of compound 5 was investigated in the present study via its reactions with several active-hydrogen containing compoundsaiming to synthesize each of thieno[2,3-b]pyridine derivatives $\mathbf{8 a}, \mathbf{b}, \mathbf{1 1}, \mathbf{1 4 a}, \mathbf{b}, \mathbf{1 7}, \mathbf{2 0 , 2 3} ; \mathbf{3 -}$ aminothieno[2,3-b]pyridine-2-carbohydrazidederivative 24 which used in turn, to prepare(1 H -pyrazol-1-yl)carbonyl-thieno $[2,3$-b]pyridin-3-amine $26, \mathrm{~N}$ -phenylmethylenethieno[2,3-b]pyridine-2-carbohydrazide31, pyrido[3', $\left.2^{\prime}: 4,5\right]$ thieno[3,2-d]pyrimidinone derivatives 33, 35, 38a,b andpyrazolo[$\left.3^{\prime}, 4: 4,5\right]$ thieno[2,3 -b]pyridine-3-one derivative 40 . The structures of the newly synthesized heterocyclic compounds were elucidated by considering the data of both elemental and spectral data.

Index Terms:2-Cyanoethanethioamide; Pyridothienopyrimidinones;N-phenylmethylenethienopyridin-2-carbohydrazides; 2-Thioxopyridine-3-carbonitrile.

1 INTRODUCTION

$\mathbf{T}_{\text {hieno[2,3-b]pyridines are of special importance due to }}$ the reported biological activities, such as antimicrobial ${ }^{1-4}$, potent antitumor ${ }^{5}$, antifungal agents ${ }^{6}$ and antiinflammatory ${ }^{7}$ activities. Enaminoester moieties were utilized in synthesis of different heterocyclic systems with pronounced biological and pharmaceutical activities such as thienopyrimidines ${ }^{8}$.Additionally, derivatives of thieno-[3,2-d]pyrimidines are of interest as biologically active compounds 9,10 .In light of all these considerations and in continuation of our long-term interest in the chemistry of pyridines ${ }^{11-17}$ we wish to report herein on the scope of 2-thioxopyridine-3-carbonitrile for their hetero-cyclization with some α-halocarbonyl containing reagents. The work has resulted in the formation of several new functionally substituted pyridines which could also, be annulated into fused heterocyclic ring systems.

2 RESULTS AND DISCUSSION

It has been found that 1-(1-benzofuran-2-yl)ethanone ${ }^{18}(\mathbf{1})$ reacted with furan-2-carbaldehyde(2) in 1:1molar ratio to give the corresponding 1-(1-benzofuran-2-yl)-3-(furan-2-yl)prop-2-en-1-one(3)whichreacted under reflux with 2cyanoethanethioamide (4)in absolute ethanol containing a catalytic amount of piperidine to afford a reaction product 5. Such reaction product was formed via a Michael addition of $-\mathrm{CH}_{2}$ - in $\mathbf{4}$ on- $\mathrm{CH}=\mathrm{CH}$ - of $\mathbf{3}$ followed by cyclization via dehydration and dehydrogenation to give 5. Considering the data of $\operatorname{IR},{ }^{1} \mathrm{H}$ NMR, Mass spectrometry and elemental
(a) Corresponding author, Cairo University, Faculty of Science, Chemistry Department; Giza, 12613, Egypt.
(b) Cairo University, Faculty of Science, Chemistry Department; Giza, 12613, Egypt.
(c) Ibb University, Faculty of Science, Yemen.
analyses (cf. Exp. Part) the structure of 5 was investigated. The synthetic potentiality of 5 was investigated through its reaction with several active-halogen containing compounds e.g. chloroacetamide, 2 -chloro-N-(4-bromophenyl)acetamide ($\mathbf{6 a}, \mathbf{b}$). Thus, it has been found that compound $\mathbf{5}$ reacted with chloroacetamide (6a) in 1:1 ratio in methanolic sodium under reflux to afford firstly 2-\{6-(1-benzofuran-2-yl)-3-cyano-4-(furan-2- yl)pyridine-2-ylfacetamide 7awhich formed through dehydrochlorination. The IR spectrum of 7a showedthe presence of absorption bands corresponding to the CONH_{2} and $\mathrm{CNfunctions}$. the parent peak at $\mathrm{m} / \mathrm{z}=375$ which corresponding to its molecular weight, the base peak at $\mathrm{m} / \mathrm{z}=331$ which corresponds to the fragment of $\mathrm{M}^{+}-\mathrm{CONH}_{2}$ and peak at $\mathrm{m} / \mathrm{z}=306$ which corresponds to the fragment of M^{+}-furyl, 2 H . The formation of compound 7 a was further elucidated via its cyclization in ethanolic potassium hydroxide solution to afford the corresponding thieno[2,3-b]pyridine derivative 8a. In a similar manner,2-chloro N -(4bromophenyl)acetamide ($\mathbf{6 b}$) was reacted with compound 5to afford the corresponding $2-\{6$-(1-benzofuran- 2 -yl)-3-cyano-4-(furan-2-yl)pyridine-2-yl\}-N-(4-bromophenyl)acetamide $\mathbf{7 b}$ which in turn, cyclized in ethanolic potassium hydroxide solution to afford the corresponding thieno[2,3blpyridine derivative $\mathbf{8 b}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{7 b}$ revealed the signals of CH_{2} at $4.18 \mathrm{ppm}, \mathrm{NH}$ at 10.61 ppm in addition to aromatic, furan and pyridine protons and the mass spectrum of $\mathbf{8 b g a v e}$ the parent peak $\left(\mathrm{M}^{+}\right)$at $\mathrm{m} / \mathrm{z}=530$ as well as the isotope peak $\left(\mathrm{M}^{+}+2\right)$ at $\mathrm{m} / \mathrm{z}=532$ and peak at $\mathrm{m} / \mathrm{z}=359$ which corresponding to the fragment of $\mathrm{M}^{+}-\mathrm{NHC}_{6} \mathrm{H}_{4}-4-\mathrm{Br}$ (cf. Exp. Part).Likewise, it has been found that compound 5 reacted with 1chloroacetone $(9$ a) under the same above mentioned experimental conditions to afford 6-(1-benzofuran-2-yl)-4-(furan-2-yl)-2-[(2-oxoprop-yl)sulfanyl]pyridine-3-carbonitrile (10a). The IR $\left(\mathrm{cm}^{-1}\right)$ of this compound showed the
absorption bands corresponding CO and CN functions as well as its ${ }^{1} \mathrm{H}$ NMR revealed the signals of $\mathrm{COCH}_{3}, \mathrm{SCH}_{2}$, furan, aromatic and pyridine protons (cf. Exp. Part and Scheme 1). Compound 10a cyclized in ethanolic potassium hydroxide under reflux 5 hr to afford the corresponding thieno[2,3-b]pyridine derivative 11 whose structure was established by considering the data of IR, ${ }^{1} \mathrm{H}$ NMR and elemental analyses,moreover, its mass spectrum showed
the peaks according to the fragmentation pattern illustrated below.An authentic sample of compound 11 obtained through the reaction of compound 5 with 3-chloropentane-2,4-dione ($\mathbf{9 b}$) under the same experimental conditions. It is important to report here that all trials to isolate the intermediate 10b were failed under a variety of experimental conditions (cf. Exp. Part and Scheme 1).

Fragmentation pattern of compound 10a:

Similarly, Compound 5 was reacted with each of 2-bromo-1-(phenyl or 4-chlorophenyl)ethanone (12a,b) and chloromethylbenzimidazole (15) to afford 6-(1-benzofuran-2- yl)-2-\{2-phenyl or 4-chlorophenyl-2-oxoethyl] or $2-[(1 \mathrm{H}-$ benzimidazol-2-ylmethyl)sulfanyl\}-4-(furan-2-yl)-pyridine3 -carbonitriles 13a,b and $\mathbf{1 6}$ respectively. Compounds $\mathbf{1 3 a}, \mathbf{b}$
and 16 were cyclized in respective manner to afford $\mathbf{1 4 a , b}$ and 17 in ethanolic potassium hydroxide under reflux 5 hr . The IR (cm^{-1}) of compounds $13 \mathrm{a}, \mathrm{b}$ and 16 showed the absorption bands of CN functions which disappeared from the IR $\left(\mathrm{cm}^{-1}\right)$ of compounds $14 \mathrm{a}, \mathrm{b}$ and 17 in addition to the absorption bands of NH_{2} group for compounds $\mathbf{1 4 a}, \mathbf{b}$ and
17. Moreover, we elucidated the structures of each of compounds $13 \mathrm{a}, \mathrm{b}, \mathbf{1 6}, \mathbf{1 4 a , b}$ and 17 by considering the data of ${ }^{1} \mathrm{H}$ NMR, mass spectra as well as that of elemental analyses(cf. Exp. Part and Scheme 2).The study was extended to explore the nucleophilic reactivity of SH group in compound 5 towards electrophilic C-containing reagents e.g. iodomethane and chloroacetonitrile 18a,b. Thus, it has been found that compound 5 was reacted with iodomethane (18a) in methanolic sodium methoxide under stirring at room temperature for 30 min . to give the corresponding 2-methylthio derivative 19a whose structure was elucidated by considering the data of elemental analyses, IR and mass spectra (cf. Exp. Part). Also, compound 20 obtained without isolation of 19b under a
variety of reaction conditions through the reaction of compound 5 with chloroacetonitrile ($\mathbf{(1 8 b}$) in methanolic sodium methoxide either at room temperature under stirring or under reflux for $3-5 h r$. The $\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$ of this reaction product showed the absorption bands of CN and NH_{2} functions andits mass spectrum gaveparent and base peak at $\mathrm{m} / \mathrm{z}=357$ which corresponds to its molecular weight. Furthermore, peaks at $\mathrm{m} / \mathrm{z}=356,355,341$ and 331 which corresponds to the fragments related to the removal of $\mathrm{H}, 2 \mathrm{H}, \mathrm{NH}_{2}$ and CN radicals from radical-cation $\left(\mathrm{M}^{+}\right.$.) form of compound 20 . The ${ }^{1} \mathrm{H}$ NMR spectrum of this reaction product revealed the signals of NH_{2}, furan, pyridine and aromatic protons (cf. Scheme 3 and Exp. Part).

8a,b

Scheme 1
Scheme 1: Synthesis of 7a,b; 8a,b; 10a and $\mathbf{1 1}$ from pyridinethione derivative 5

Scheme 2: Synthesis of 13a,b; 14a,b; 16; 17 from pyridinethione derivative 5

Compound 5 was reacted with methyl chloroacetate (21) underthe same above-mentioned experimental conditions to afford the reaction product 22 which cyclized to the corresponding thieno[2,3-b]pyridine derivative 23. The structure of both 22 and 23 was elucidated by considering the data of elemental analyses and spectral data studies (cf. Exp. Part and Scheme 3). Compound 23 was used as a good starting material to synthesize new synthon 24 through its reaction with hydrazine hydrate. The $\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$ of compound 24 showed the absorption bands of NH_{2} and NHNH_{2} as well as its ${ }^{1} \mathrm{H}$ NMR spectrum revealed the signals of $\mathrm{NH}_{2}, \mathrm{NHNH}_{2}$, furan, pyridine and aromatic protons. Moreover, its mass spectrum gave the parent peak $\left(\mathrm{M}^{+}\right)$at $\mathrm{m} / \mathrm{z}=390$ which corresponds to its molecular weight and peaks corresponds to the fragments at $\mathrm{M}^{+}-\mathrm{H}, \mathrm{M}^{+}-\mathrm{NH}_{2}$, $\mathrm{M}^{+}-\mathrm{NHNH}_{2}, \mathrm{M}^{+}-\mathrm{CONHNH}_{2}$ (cf. Exp. Part and Scheme 3).
The chemical reactivity and synthetic potentiality of 24 was investigated via its chemical reactions with several reagents. Thus, it has been found that 24 was reacted with each of pentan-2,4-dione 25andethyl 3-oxobutanoate27in acetic acid under reflux for 3-5 hours to afford the reaction products26 and 28. ${ }^{1} \mathrm{HNMR}$ spectrum of 26 was found in good agreement with the assigned structure. Compound

24was reacted with (benzylidene)malononitrile (29) or benzaldehyde (30) in pyridine-ethanol mixture under reflux to afford the reaction product formulated as 31 (cf. Scheme 4). The chemical structure of 31 was confirmed by considering the data of IR and elemental analyses. Moreover, its mass spectrum gave $\mathrm{m} / \mathrm{z}=478$ (38.2 \%) which corresponding to its molecular weight, in addition to several peaks corresponding to fragments that confirm its structure. Also ${ }^{1} \mathrm{HNMR}$ spectrum of 31was found in good agreement with the assigned structure (cf. Exp. Part and Scheme 4).
Compound 24 also, was reacted with each of formic acid, acetic anhydride, triethyl orthoformate, dimethylform-amide-dimethylacetal and glacial acetic acid in a respective manner to afford the corresponding pyridothienopyrimidines 33, 35, 38a, \mathbf{b} andpyrazolo $\left[3^{\prime}, 4^{\prime}: 4,5\right]$ thieno[2,3b]pyridin-3-one 40 respectively. The elemental analyses and IR spectral data considered to elucidate the structure of these products and their mass spectra confirm their structures further, it gave $\mathrm{m} / \mathrm{z}=400$ (66.7 \%) for 33, 498(51.2\%) for 35, 456(16.5\%) for 38a, 455(14.6\%) for 38b and 415(36.8\%) for 40 (cf. Scheme 4).

20

Cll

Scheme 3
Scheme 3: Synthesis of 19a; 20; 22; 23; 24 from pyridinethione derivative 5

3 EXPERIMENTAL

All melting points were uncorrected. I.R. (KBr discs) spectra were recorded on a Shimadzu FTIR-8201PC Spectrophotometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a Varian Mercury 300 MHz. , and a Varian Gemini 200 MHz . spectrometers using TMS as an internal standard and
$\mathrm{CDCl}_{3}, \mathrm{DMSO}-\mathrm{d}_{6}$, and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ as solvents. Chemical shifts were expressed as $\delta(\mathrm{ppm})$ units. Mass spectra were recorded on Shimadzu GCMS-QP1000EX using an inlet type at 70 eV . The Micro analytical Center of Cairo University performed the microanalyses

Scheme 4: Synthesis of 26; 28; 31; 33; 35; 38; 40 from carbohydrazide derivative 24

Synthesis of 5

A solution of each of $3(2.38 \mathrm{~g}, 10 \mathrm{mmol})$ and $4(1 \mathrm{~g}, 10 \mathrm{mmol})$ in absolute ethanol $(30 \mathrm{~mL})$ and few drops of piperidine was added and heated under reflux for 5 hrs . The reaction mixture was then evaporated till $1 / 3$ volume then leave the solution about thirty minutes, the product so formed, was collected by filtration, washed with cold ethanol, and then crystallized from the dioxane to give the corresponding 5.
6-(1-Benzofuran-2-yl)-4-(furan-2-yl)-2-thioxo-1,2-dihydro-pyridine-3-carbonitrile5: Orange crystals, m.p. $262^{\circ} \mathrm{C}$; IR $\left(\boldsymbol{v} \mathbf{c m}^{-1}\right): 3435(\mathrm{NH}), 2219(\mathrm{CN})$ and $1557(\mathrm{C}=\mathrm{S})$; MS (m/z): 318 ($\mathrm{M}^{+}, 98.5 \%$ corresponding to the molecular formula $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ of the assigned structure), $319\left(\mathrm{M}^{++} 1,19.1 \%\right)$, 317 ($\mathrm{M}^{+}-\mathrm{H}, 75.0 \%$), $293\left(\mathrm{M}^{++} 1-\mathrm{CN}, 100 \%\right), 292\left(\mathrm{M}^{+}-\mathrm{CN}\right.$, 67.6\%). ${ }^{\mathbf{H}} \mathbf{H}$ NMR ($\left.\delta \mathbf{p p m}\right): 6.74-8.245$ (m, 10H, aromaticH's, $\mathrm{C}_{5} \mathrm{H}$ and NH). Anal. for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (318), Calcd./Found
(\%): C (67.91/67.82) H (3.17/3.00) N (8.80/8.52) S (10.07/9.80).

Synthesis of 7a,b, 10a, 13a,b, 16,19a, 20 and 22 : (General
Procedure): A solution of each of $5(0.318 \mathrm{~g}, 1 \mathrm{mmole})$ and2Chloroacetamide(6a), N -(4-bromophenyl)-2-chloro-acetamide(6b), chloroacetone (9a), 2-bromo-1-phenyl(4-chlorophenyl)ethanone (12a,b), chloromethylbenzimidazole (15), methyl iodide(18a), chloroacetonitrile(18b) and methyl chloroacetate (22), (0.093g, 0.248g, 0.092g, 0.166g, $0.284 \mathrm{~g}, 0.077 \mathrm{~g}$ and $0.122 \mathrm{~g}, 1 \mathrm{mmole}$) in sodium methoxide (prepared from 0.10 g of sodium and methanol 25 mL) was stirred at room temperature for 15 minutes. The formed precipitate was collected by filtration, washed with water crystallized from ethanol and dioxane to give $7 \mathbf{a}, \mathbf{b}, \mathbf{1 0 a}$, 13a,b, 16,19a, 20 and 22 respectively.
2-\{[6-(1-Benzofuran-2-yl)-3-cyano-4-(furan-2-yl)pyridin-2-
yl]sulfanyl\}-acetamide7a:Pale yellow crystals (75\%), m.p = 264
${ }^{\circ} \mathrm{C}$; IR ($\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right)$ v: 3380, 3192(NH_{2}), 2214 (CN), 1649 (amidic CO); MS: $375\left(\mathrm{M}^{+}, 33.35 \%\right.$ which corresponding to the molecular formula $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ of the assigned structure), $359\left(\mathrm{M}^{+}-\mathrm{NH}_{2}, 1.87 \%\right)$ and $331\left(\mathrm{M}^{+}-\mathrm{CO} \mathrm{NH}_{2}\right.$, 100\%); Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (375): C 63.99 H 3.49 N 11.19 S 8.54. Found: C 63.83 H 3.31 N 11.10 S 8.42 2-\{[6-(1-Benzofuran-2-yl)-3-cyano-4-(furan-2-yl)pyridin-2-yl]sulfanyl\}-N-(4-bromophenyl)acetamide7b: Pale yellow crystals (75%), mp. $=250^{\circ} \mathrm{C}$; IR ($\mathrm{cm}^{-1}, \mathrm{KBr}$) v: 3253(NH), 3034 (C-H aromatic), 2218 (CN), 1656 (amidic CO); ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\boldsymbol{\delta}(p p m): 4.18\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{SCH}_{2}-\right), 6.73-7.95(\mathrm{~m}, 13 \mathrm{H}$, Ar, furyl and pyridinyl H's) and 10.61 (s, 1H, NH); Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}$ (530): C 58.88 H 3.04 N 7.92 Br 15.07 S 6.05. Found: C 58.81 H 2.90 N 7.76 Br 14.80 S 6.00 6-(1-Benzofuran-2-yl)-4-(furan-2-yl)-2-[2-oxopropyl)sulfanyl]pyridine -3- carbonitrile 10a: Pale yellow crystals (68%), m.p $=184{ }^{\circ} \mathrm{C} ;$ IR ($\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right)$ v: 3062 (C-H aromatic), 2214 (CN), 1720 (CO); ${ }^{1} \mathrm{H}$ NMR (DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta}(p p m): 2.37$ (s, 3H, $\left.\mathrm{CH}_{3}\right), 4.33\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{SCH}_{2}-\right)$ and $6.71-8.14(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}$, furyl and pyridinyl H's); Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (374): C 67.37 H 3.77 N 7.48 S 8.56. Found: C 67.10 H 3.35 N 7.13 S 8.42 6-(1-Benzofuran-2-yl)-4-(furan-2-yl)-2-[2-oxo-2-phenyl-ethyl)sulfanyl]pyridine-3- carbonitrile 13a: Orange crystals (55\%), m.p = $120{ }^{\circ} \mathrm{C}$; IR ($\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right)$ v: 2220 (CN), 1691 (CO);Anal. Calcd. For $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (436): C 71.54 H 3.69 N 6.42 S 7.35. Found: C 71.35 H 3.32 N 6.13 S 7.42

6-(1-Benzofuran-2-yl)-4-(furan-2-yl)-2-\{[2-(4-chlorophenyl)-2-oxo-ethyl)]sulfanyl\}pyridine-3-carbonitrile 13b: Pale yellow crystals ($62 / \%$), m.p $=150{ }^{\circ} \mathrm{C}$; IR ($\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right)$ v: 2209 (CN), 1689(CO); ${ }^{1} \mathrm{H}$ NMR (DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta}$ (ppm): 4.85 (s, 2H, SCH_{2}) and 6.68-8.18 (m, 13H, Ar, furyl and pyridinyl H's); Anal. Calcd. For $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ (471): C 66.31 H 3.21 N 5.95 S 6.81 Cl 7.53. Found: C 66.15 H 3.30 N 5.42 S 6.42 Cl 7.32 2-[(1H-Benzimidazol-2-ylmethyl)sulfanyl]-6-(1-benzo-furan-2-yl)-4-(furan-2-yl)pyridine-3-carbonitrile 16: Pale yellow crystals ($51 / \%$), m.p $=254{ }^{\circ} \mathrm{C}$; IR ($\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right) \mathrm{v}$: 3368(NH), 3049(Aromatics CH) and 2211 (CN);MS: 448(M+, 80.8% which corresponding to the of the molecular formula $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ of the assigned structure), $447\left(\mathrm{M}^{+}-\mathrm{H}, 54.9 \%\right)$, 317 (${ }^{+}$- benzimidazolyl methyl, 8.3\%), 163 (SCH_{2} benzimidazolyl, 100\%) and 131(benzimidazolyl methyl, 77.7\%); ${ }^{1} \mathrm{H}$ NMR (DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta}$ (ppm): 4.90 (s, 2H, -$\mathrm{SCH}_{2}-$) and 6.84- $8.11(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}$, furyl, pyridinyl H's and NH); Anal. Calcd. For $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (448): C 69.63 H 3.60 N 12.49 S 7.15. Found: C 69.30 H 3.45 N 12.10 S 6.90

6-(1-Benzofuran-2-yl)-4-(furan-2-yl)-2-(methylsulfanyl)-pyridine-3- carbonitrile 19a: Pale yellow crystals (60\%), m.p $=$ $152{ }^{\circ} \mathrm{C}$; IR ($\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right)$ v: 2210 (CN); Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (332): C 68.66 H 3.64 N 8.43 S 9.65. Found: C 66.35 H 3.42 N 8.30 S 9.42

3-Amino-6-(1-benzofuran-2-yl)-4-(furan-2-yl)thieno[2,3-b]-pyridine-2-carbonitrile20:Yellow crystals (65%), m.p $=228^{\circ} \mathrm{C}$; IR ($\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right)$ v: $3467,3339\left(\mathrm{NH}_{2}\right), 3027$ (C-H, aromatic), 2195 (CN); MS: $357\left(\mathrm{M}^{+}, 100 \%\right.$ which corresponding to the of the molecular formula $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ of the assigned structure), $359\left(\mathrm{M}^{+}-\mathrm{NH}_{2}, 8.63 \%\right)$ and $331\left(\mathrm{M}^{+}-\mathrm{CN}, 45.12 \%\right)^{1} \mathrm{H}$ NMR (DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta}(p p m): 6.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$ and 6.86-8.14 (m, 9H,

Ar, furyl, pyridinyl H's); Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (357): C 67.21 H 3.10 N 11.76 S 8.97. Found: C 67.10 H 2.90 N 11.60 S 8.63

Methyl \{[6-(1-benzofuran-2-yl)-3-cyano-4-(furan-2-yl)-pyridin-2-yl]-sulfanyl\}acetate 22: Pale yellow crystals (65%), m.p $=172^{\circ} \mathrm{C}$; IR ($\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right)$ v: 3056(Aromatic CH), $2214(\mathrm{CN})$ and 1742 (ester CO); ${ }^{1} \mathrm{H}$ NMR (DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta}(p p m): 3.68$ ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{COOCH}_{3}\right), 4.24\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{SCH}_{2}-\right)$ and 6.73-8.14 (m, 9H, Ar, furyl, pyridinyl H's); Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (390): C 64.60 H3.61 N 7.18 S 8.21. Found: C 64.50 H 3.45N 6.80 S 8.00
Synthesis of8a,b, 11, 14a,b, 17 and 23: A mixture of each of $\mathbf{7 a}, \mathbf{b}, \mathbf{1 0 a}, \mathbf{1 3 a}, \mathbf{b}, 16$ and 22 (0.01 mole of each) and ethanolic sodium ethoxide (0.23 g of sodium with about 50 mL ethanol) was heated under reflux for 2 h . The product so formed after cooling was filtered off, wash with water and crystallize from dioxane solvent to afford 8a,b, 11, 14a,b, 17 and 23 respectively.
3-Amino-6-(1-benzofuran-2-yl)-4-(furan-2-yl)thieno[2,3-b]-pyridine-2-carboxamide 8a:Yellow crystals (75%), m.p $=300^{\circ} \mathrm{C}$; IR ($\mathrm{cm}^{-1}, \mathrm{KBr}$) v: 3469, 3318, 3261 3139(two NH_{2}), 1665 (amidic CO); H NMR (DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta}(p p m): 6.81-8.08$ (m, 13H, Ar, furyl, pyridinyl H's and $2 \mathrm{NH}_{2}$);i Anal. Calcd. For $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (375): C 63.99 H 3.49 N 11.19 S 8.54 . Found: C 63.72 H 3.30 N 11.00 S 8.34

3-Amino-6-(1-benzofuran-2-yl)-N-(4-bromophenyl)-4-(furan-2-yl)thieno[2,3-b]pyridine-2-carboxamide8b: White crystals (55\%), m.p $=256^{\circ} \mathrm{C}$; IR ($\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right)$ v: $3251,3120\left(\mathrm{NH}_{2}\right), 3027$ (C-H aromatic), 1656 (amidic CO); MS: $532\left(\mathrm{M}^{+}+2,26.11 \%\right.$), $530\left(\mathrm{M}^{+}, 24.4 \%\right.$ which corresponding to the of the molecular formula $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}$ of the assigned structure), $359\left(\mathrm{M}^{+}\right.$ - NHPh-Br, 100\%) and 331 (M^{+}-CO NHPh-Br, 21.36\%); Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{16} \quad \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}$ (530): C 58.88 H 3.04 N 7.92 Br 15.07 S 6.05. Found: C 58.80 H 2.90 N 7.60 Br 14.75 S 5.90

1-[3-Amino-6-(1-benzofuran-2-yl) 4-(furan-2-yl)thieno[2,3-b]pyridine-2-yl]ethanone 11: Orange crystals (65\%), m.p $=>300$ ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right)$ v: $3476,3300\left(\mathrm{NH}_{2}\right), 1623$ (CO with $\mathrm{H}-$ bonding);MS: $374\left(\mathrm{M}^{+}, 100 \%\right.$ which corresponding to the of the molecular formula $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ of the assigned structure $), 373\left(\mathrm{M}^{+}-\mathrm{H}, 10 \%\right), 359\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 70 \%\right), 331\left(\mathrm{M}^{+}-\right.$ $\mathrm{COCH}_{3}, 6 \%$); ${ }^{1} \mathrm{H}$ NMR (DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta}(p p m): 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 7.72 (br, 2H, NH2)and 6.86- $8.10(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}$, furyl and pyridinyl H's); Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (374): C 67.37 H 3.77 N 7.48 S 8.56. Found: C 67.10 H 3.50 N 7.23 S 8.30
[3-Amino-6-(1-benzofuran-2-yl)-4-(furan-2-yl)thieno[2,3-b]-pyridine-2-yl](phenyl)methanone14a: Orange crystals (50\%), m.p $=>300{ }^{\circ} \mathrm{C}$; IR ($\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right)$ v: 3466, $3400\left(\mathrm{NH}_{2}\right)$, 1637 (CO with H-bonding);Anal. Calcd. For $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (436): C 71.54 H 3.69 N 6.42 S 7.35. Found: C 71.20 H 3.50 N 6.23 S 7.20
[3-Amino-6-(1-benzofuran-2-yl)-4-(furan-2-yl)thieno[2,3-b]-pyridine-2-yl](4-chlorophenyl)methanone14b:Orange crystals (58%), m.p $=>300^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right)$ v: $3475,3277\left(\mathrm{NH}_{2}\right) ; \mathrm{MS}:$ $471\left(\mathrm{M}^{+}, 62.76 \%\right.$ which corresponding to the of the molecular formula $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ of the assigned structure), $470\left(\mathrm{M}^{+}-\right.$ $\mathrm{H}, 100 \%), 469\left(\mathrm{M}^{+}-2 \mathrm{H}, 95.82 \%\right)$, $359\left(\mathrm{M}^{+}-\mathrm{Ph}-\mathrm{Cl}, 3.34 \%\right)$, $331\left(\mathrm{M}^{+}-\mathrm{COPh}-\mathrm{Cl}, 4.42 \%, 139(\mathrm{COPh}-\mathrm{Cl}, 45.13 \%)\right.$ and

111(Ph-Cl, 60.86\%)Anal. Calcd. For $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ (471): C 66.31 H 3.21 N 5.95 S 6.81 Cl 7.53. Found: C 66.20 H 3.15 N 5.32 S 6.70 Cl 7.22

2-(1H-Benzimidazol-2-yl)-6-(1-benzofuran-2-yl)-4-(furan-2-yl)thieno-[2,3-b]pyridin-3-amine 17:Orange crystals (60/\%), m.p $=>300{ }^{\circ} \mathrm{C}$; IR ($\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right)$ v: 3433, 3339, 3242(NH), ${ }^{1} \mathrm{H}$ NMR (DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta}(p p m): 3.48$ (br, $3 \mathrm{H}, \mathrm{NH}_{2}$ and NH) and 6.85-8.09 (m, 13H, Ar, furyl, pyridinyl H's); Anal. Calcd. For $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (448): C 69.63 H 3.60 N 12.49 S 7.15. Found: C 69.45 H 3.50 N 12.25 S 7.10
Ethyl 3-amino-(6-(1-benzofuran-2-yl)-4-(furan-2-yl)thieno-[2,3-b]-pyridine-2- carboxylate 23: Yellow crystals (55 \%), m.p $=>300^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right)$ v:3433, $3300\left(\mathrm{NH}_{2}\right)$ and 1665 (ester CO with H-bonding); ${ }^{1} \mathrm{H}$ NMR (DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta}(p p m): 3.30$ (s, $\left.3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 6.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$ and 6.78-8.03 (m, 9H, Ar, furyl, pyridinyl H's); Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (390): C 64.60 H 3.61 N 7.18 S 8.21. Found: C 64.35 H 3.60 N 7.10 S 7.90

Synthesis of hydrazide 24:Method A: A solution of 22 (0.0025 mol) in hydrazine hydrate $(15 \mathrm{~mL})$ and ethanol $(20$ mL) was heated under reflux for 5 h ; the excess solvents were evaporated and cooled. The solid was collected by filtration, dried, and crystallized from the acetic acid to give 24.

Method B: A solution of $23(0.0025 \mathrm{~mol})$ in hydrazine hydrate $(15 \mathrm{~mL})$ and ethanol (20 mL) was heated under reflux for 4 h ; the excess solvents were evaporated and cooled. The solid was collected by filtration, dried, and crystallized from the acetic acid to give 24 .
3-Amino-6--(1-benzofuran-2-yl)-4-(furan-2-yl)thieno[2,3-
b]pyridine-2-carbohydrazide(24): Yellow crystals (76\%), m. $\mathrm{p}=265^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right): 3450,3301,3124\left(\mathrm{NH} \& \mathrm{NH}_{2}\right)$, MS: $390\left(\mathrm{M}^{+}, 27.1 \%\right.$ which corresponding to the of the molecular formula $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ of the assigned structure), $359\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{NHNH}_{2}, 100 \%\right), 331\left(\mathrm{M}^{+}-\mathrm{CONHNH}_{2}, 13.7 \%\right) ;{ }^{1} \mathbf{H}$ NMR (DMSO-D ${ }_{6}$) ($\delta \mathrm{ppm}$): 4.31 (br, 2H, NH2); 4.48 (br, 2H, NH2); 6.73-8.07 (m, 9H, Aromatic HS) and 9,40 (br, 1H, NH);Anal. Calcd. ForC ${ }_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ (390): C 61.53 H 3.61 N 14.35 S 8.21. Found: C 61.40 H 3.50 N 14.23 S 8.10
Synthesis of 26: A solution of $24(0.2 \mathrm{~g}, 0.00055 \mathrm{~mol})$ in acetylacetone $25(10 \mathrm{~mL})$ was heated under reflux for 6 h . The reaction mixture was triturated with ethanol $(5 \mathrm{~mL})$ and then left to cool. The solid was collected by filtration, dried and crystallized from the dioxane to give 26.
2-[(3,5-Dimethyl-1H-pyrazol-1-yl)carbonyl]-4-(furan-2-yl)-6-(1-benzo-furan-2-yl)thieno[2,3-b]pyridin-3-amine (26): Red crystals (87%), m.p $=>300^{\circ} \mathrm{C}$; IR $\left(v \mathrm{~cm}^{-1}\right): 3436,3337\left(\mathrm{NH}_{2}\right)$, 3031 (aromatic-CH), 1640 (CO); ${ }^{1} \mathbf{H}$ NMR (DMSO-D 6) ($\delta \mathrm{ppm}$): 2.29(s, 3H, $\left.\mathrm{CH}_{3}\right) ; 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 6.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$ and 6.86- 8.09(m, 10H, ArHs, and hetero-ArHs);Anal. Calcd. For $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ (454): C 66.07 H 3.99 N 12.33 S 7.05 . Found: C 65.80 H 3.84 N 12.10 S 7.10
Synthesis of 27: A solution of $24(0.2 \mathrm{~g}, 1 \mathrm{mmol})$ with ethyl acetoacetate $(0.12 \mathrm{~g}, 1 \mathrm{mmol})$ in acetic acid (15 mL) was heated under reflux for 5 h . The excess solvent was evaporated and the solid so formed after cooling was
collected by filtration, dried and crystallized from the acetic acid to give 27.
2-\{[3-amino-6-(1-benzofuran-2-yl)-4-(furan-2-yl)thieno[2,3-b]pyridin-2-yl]carbonyl\}-5-methyl-1,2-dihydro-3H-pyrazol-3one: Orange crystals (67%), m.p= $>300^{\circ} \mathrm{C}$; IR $\left(v \mathrm{~cm}^{-1}\right): 3435$, $3338\left(\mathrm{NH}_{2}\right), 3104(\mathrm{NH}), 1673,1615$ (two CO); Anal. Calcd. For $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ (456): C 63.15 H 3.53 N 12.27 S 7.02 . Found: C 62.90 H 3.20 N 12.10 S 6.90
Synthesis of 31: Method A: A solution of $24(0.2 \mathrm{~g}, 0.00055$ mol) and benzylidenemalononitrile 29(0.1g, 0.00055 mol) in pyridine (15 mL) and ethanol (20 mL) was heated under reflux for 2 h , the excess solvents were evaporated and cooled. The solid was collected by filtration, dried, and crystallized from the dioxane to give 31 .
Method B: A solution of $24(0.20 \mathrm{~g}, 0.00055 \mathrm{~mol})$ and benzaldehyde $30(0.058 \mathrm{~g}, 0.00055 \mathrm{~mol})$ in pyridine $(15 \mathrm{~mL})$ and ethanol (20 mL) was heated under reflux for 2 h . Excess solvents were evaporated and cooled. The solid was collected by filtration, dried, and crystallized from dioxane to give 31.
3-Amino-6-(1-benzofuran-2-yl)-4-(furan-2-yl)-N'-[(phenyl)-methyl-idene]thieno[2,3-b]pyridine-2-carbohydrazide (31): Red crystals (86%), m.p= $285{ }^{\circ} \mathrm{C}$; IR (vcm^{-1}): 3481, 3305 $\left(\mathrm{NH}_{2}\right), 3125(\mathrm{NH}), 3034$ (aromatic-CH) and 1631 (amidic CO); MS: $478\left(\mathrm{M}^{+}, 38.2 \%\right.$ which corresponding to the molecular formula $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ of the assigned structure), $359\left(\mathrm{M}^{+}-\mathrm{NHN}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}, 100 \%\right), 331\left(\mathrm{M}^{+}-\mathrm{CONHN}=\mathrm{CH}-\right.$ $\mathrm{C}_{6} \mathrm{H}_{5}, 8.4 \%$) ; ${ }^{1} \mathrm{H}$ NMR (DMSO-D ${ }_{6}$) ($\delta \mathrm{ppm}$): 6.83 (s, 2H, NH_{2}); 7.27-8.05 (m, 13H, Aromatic Hs); $8.16(\mathrm{~s}, 1 \mathrm{H},-\mathrm{N}=\mathrm{CH})$ and 11.39 (br, $1 \mathrm{H}, \mathrm{NH}$); Anal. Calcd. For $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ (478): C 67.77 H 3.79 N 11.71 S 6.70. Found: C 67.65 H 3.54 N 11.53 S 6.61
Synthesis of 33: A solution of $24(0.2 \mathrm{~g}, 0.00055 \mathrm{~mol})$ and formic acid $32(15 \mathrm{ml})$ was heated under reflux for 6 h . The excess solvent was evaporated and cooled. The solid was collected by filtration, dried, and crystallized from the acetic acid to give 33.
3-Amino-7-(1-benzofuran-2-yl)-9-(furan-2-yl)pyrido[3',2'-:4,5]thieno-[3,2- d]pyrimidin-4(3H)-one 33:Yellow crystals (87%), m.p= $308{ }^{\circ} \mathrm{C} ;$ IR $\left(\mathrm{vcm}^{-1}\right): 3435,3245\left(\mathrm{NH}_{2}\right)$ and 1666 (amidic CO); MS: $400\left(\mathrm{M}^{+}, 66.7 \%\right.$ which corresponding to the molecular formula $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ of the assigned structure) and $384\left(\mathrm{M}^{+}-\mathrm{NH}_{2}, 55.6 \%\right)$; ${ }^{1} \mathbf{H}$ NMR (DMSO-D ${ }_{6}$) ($\delta \mathrm{ppm}$): 6.16-8.67 (m, 12H, NH_{2}, Aromatic, furyl H's and $\mathrm{C}_{2} \mathrm{H}$); Anal. Calcd. For $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ (400): C 62.99 H 3.02 N 13.99 S 8.01 Found: C 62.65 H 3.00 N 13.63 S 7.80

Synthesis of 35: A solution of $24(0.2 \mathrm{~g}, 0.00055 \mathrm{~mol})$ and acetic anhydride $34(15 \mathrm{ml})$ was heated under reflux for 6 h . The excess solvent was evaporated and cooled. The solid was collected by filtration, dried, and crystallized from dioxane to give 35 .
N -Acetyl-N-(7-(1-Benzofuran-2-yl)-9-(furan-2-yl)-2-methyl-4-oxopyrido-[3',2':4,5]thieno[3,2- d]pyrimidin-3(4H)-yl)acetamide35: Yellow crystals (78%), m.p $=275^{\circ} \mathrm{C}$; IR $\left(v \mathrm{~cm}^{-1}\right)$: 1743, 1687 (CO); MS: $498\left(\mathrm{M}^{+}, 51.2 \%\right.$ which corresponding to the molecular formula $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ of the assigned
structure $), 497\left(\mathrm{M}^{+}-\mathrm{H}, 42.2 \%\right), 455\left(\mathrm{M}^{+}-\mathrm{COCH}_{3}, 59.5 \%\right), 412$ $\left(\mathrm{M}^{+}-2 \mathrm{COCH}_{3}, 6.4 \%\right), 398\left(\mathrm{M}^{+}-\mathrm{N}\left(\mathrm{COCH}_{3}\right) 2,19.7 \%\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO-D ${ }_{6}$) ($\left.\delta \mathrm{ppm}\right): \quad 2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.45(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{COCH}_{3}\right) ; 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$ and $6.84-8.44(\mathrm{~m}, 9 \mathrm{H}$, Aromatic, furyl Hs); Anal. Calcd. For $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ (498): C 62.64 H 3.64 N 11.24 S 6.43 Found: C 62.70 H 3.50 N 11.10 S 6.20

Synthesis of 36a

A solution of $24(0.2 \mathrm{~g}, 0.00055 \mathrm{~mol})$ and triethylorthoforrmate $36(10 \mathrm{~mL})$ was heated under reflux for 4 h . The excess triethylorthoforrmate was evaporated and cooled. The solid was collected by filtration, dried, and crystallized from dioxane to give 38a.
Ethyl [7-(1-Benzofuran-2-yl)-9-(furan-2-yl)-4-oxopyrido[$\left.3^{\prime}, 2^{2}: 4,5\right]$ thieno[3,2-d]pyrimidin-3(4H)-yl] imidoformamide 38a: Yellow crystals (58\%), m.p $=>300^{\circ} \mathrm{C}$; IR $\left(v \mathrm{~cm}^{-1}\right): 3048$ (Aromatic CH), 1678 (CO); MS: $456\left(\mathrm{M}^{+}, 16.5 \%\right.$ which corresponding to the molecular formula $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ of the assigned structure $), 455\left(\mathrm{M}^{+}-\mathrm{H}, 5.2 \%\right), 441\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right.$, $56.5 \%)$, $385\left(\mathrm{M}^{+}-\mathrm{N}=\mathrm{C}-\mathrm{OCH}_{2} \mathrm{CH}_{3}, 100 \%\right)$ and $384\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{N}=\mathrm{CH}-\mathrm{OCH}_{2} \mathrm{CH}_{3}, 53.9 \%\right)$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (DMSO-D 6) ($\delta \mathrm{ppm}$): $1.40\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \underline{\mathrm{CH}}_{3}\right) ; 4.40\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $6.85-$ 8.79 (m, 11H, Aromatic Hs, $\mathrm{C}_{2} \mathrm{H}$ and $\mathrm{N}=\mathrm{CH}$); Anal. Calcd. For $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}(456)$: C 63.15 H 3.53 N 12.27 S 7.02 Found: C 63.00 H 3.40 N 11.90 S 6.82
Synthesis of 38b: A solution of $24(0.2 \mathrm{~g}, 0.00055 \mathrm{~mol})$ and dimethylformamide-dimethylacetal $37(0.07 \mathrm{~g}, 0.00055 \mathrm{~mol})$ in dry xylene (15 ml) was heated under reflux for 5 h . The excess solvent was evaporated and cooled. The solid was collected by filtration, dried, and crystallized from dioxane to give $\mathbf{3 8 b}$.
N-[7-(1-Benzofuran-2-yl)-9-(furan-2-yl)-4-oxopyrido[3',2'-
:4,5]thieno-[3,2-d]-pyrimidin-3(4H)-yl]N, N-dimethylimidoformamide 38b: Pale yellow crystals (68\%), m.p= $294{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{vcm}^{-1}\right): 3059$ (Aromatic CH), 1667 (CO); MS: 455 $\left(\mathrm{M}^{+}, 14.6 \%\right.$ which corresponding to the molecular formula $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$ of the assigned structure), $454\left(\mathrm{M}^{+}-\mathrm{H}, 11 \%\right)$, $411\left(\mathrm{M}^{+}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 1.4 \%\right), 384\left(\mathrm{M}^{+}-\mathrm{N}=\mathrm{CH}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 46.8 \%\right)$; ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{DMSO}_{6}\right)(\delta \mathrm{ppm}): 3.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$; and 6.818.52 (m, 11H, Aromatic Hs, $\mathrm{C}_{2} \mathrm{H}$ and $\mathrm{N}=\mathrm{CH}$); Anal. Calcd. For $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}(455)$: C 63.29 H 3.76 N 15.38 S 7.04 Found: C 62.90 H 3.50 N 15.10 S 6.80
1-Acetyl-6-(1-benzofuran-2-yl)-8-(furan-2-yl)-1,2-dihydro$3 H$-pyraz-olo $[3 ', 4 ': 4,5]$ thieno $[2,3-b]$ pyridin-3-one40: Orange crystals (58\%), m.p $=320^{\circ} \mathrm{C}$; IR ($v \mathrm{~cm}^{-1}$): 3482, 3140(two NH), 1669 (CO); MS: $415\left(\mathrm{M}^{+}, 36.8 \%\right.$ which corresponding to the molecular formula $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ of the assigned structure), 414 (${ }^{+}$-H, $\left.36.8 \%\right) ;{ }^{1} \mathbf{H}$ NMR (DMSO-D 6) ($\delta \mathrm{ppm}$): 2.73(s,
$\left.3 \mathrm{H}, \mathrm{COCH}_{3}\right), 6.05-8.60(\mathrm{~m}, 9 \mathrm{H}$, Aromatic, furyl H s) and 10.59 (s, 1H, NH); Anal. Calcd. ForC $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ (415): C 63.61 H 3.15 N 10.12 S 7.72 Found: C 63.30 H 2.91 N 10.10 S 7.80

REFERENCES

1. F. A. El-Essawy, M. A. Hawatta, A. E. Abdel- Megied and D. A.El- Sherbeny; Chem. Heter.Comp., 46, 325, 2010.
2. N. M. Rateb, S. H. Abdelaziz and H. F. Zohdi; J. sulfur Chem., 32,345, 2011.
3. A. E. Abdel-Rahman, E. A. Bakhite, and E. A. Al-Taifi, J. Chin. Chem. Soc., 49, 223, 2002
4. A. M. Hussin, F. A. Abu-Shanab, and E. A. Ishak, Phosphorus,Sulfur, and Silicon, 159, 55, 2000.
5. I. Hayakawa, R. Shioya, T. Agatsuma, H. Furukawa, Y. Sugano,Bioorg. and Med.Chem. Lett., 14, 3411, 2004.
6. F. Al- Omran, A. A. El- Khair and R. M. Mohareb, J. Heter.Chem., 39, 877, 2002
7. M. J. Munchhof, S. B. Sobolov-Jaynes, M. A. Marx, US, 6492383 (2002); C. A.138, 24721 (2003).
8. H. M. Fawazy Madkour, A. A. Afify, A. A. Abdallaha, G. A.Elsayed and M. S. Salem, Eur. J. Chem. 1, 352, 2010
9. E. G. Paronikyan, Sh. F. Akopyan, A. S. Noravyan, I. A. Dzhagatspanyan, I. M.Nazaryan and A. G. Akopyan, Pharm. Chem. J.,44, 19, 2010.
10. E. G. Paronikyan, A. S. Noravyan, Sh. F. Akopyan, , I. A. Dzhagatspanyan, I. M.Nazaryan and R. G. Paronikyan, Pharm. Chem. J., 41, 14, 2007.
11. F. A. Attaby, A. M. Abdel-Fattah, L. M. Shaif, and M. M. Elsayed, Phosphorus, Sulfur, Silicon, Relat. Elem., 185, 668, 2010.
12. F. A. Attaby, A. M. Abdel-Fattah, L. M. Shaif, and M. M. Elsayed, Phosphorus, Sulfur, Silicon, Relat. Elem., 185, 129, 2010.
13. A. M. Abdel-Fattah, and M. M., Elsayed, Current Organic Chemistry, 13, 1751, 2009.
14. F. A. Attaby, A. M. Abdel-Fattah, L. M. Shaif, and M. M. Elsayed, Current Organic Chemistry, 13, 1654, 2009.
15. A. M. Abdel-Fattah, L. M. Shaif and F. A. Attaby, Phosphorus, Sulfur, and Silicon, Relat. Elem.,183, 2443,2008.
16. A. M. Abdel-Fattah and F. A. Attaby, Phosphorus, Sulfur, and Silicon, Relat. Elem.,187, 555 ,2012.
17. M. A. M. Gad-Elkareem, A. M. Abdel-Fattah, M. A. A. Elneairy, Can. J. Chem. 85,592, 2007.
18. A. O. Abdelhamid, J. Heter.Chem. 46,680, 2009.
